Representation of Orientation
Lecture Objectives

- **Representation of Crystal Orientation**

 Stereography: *Miller indices, Matrices*

 3 Rotations: *Euler angles*

 Axis/Angle: *Rodriques Vector, Quaternion*

- **Texture component by a single point**

Crystalline Nature of Materials

- Many solid materials are composed of crystals joined together:
 - In metals and other materials, the individual grains may fit together closely to form the solid:
 - EBSD can determine the orientation of individual grains and characterize grain boundaries.
Crystalline Nature of Materials - Grains

- A grain is a region of discrete crystal orientation within a polycrystalline material.
- The grain boundary is the interface between individual grains.
- Grain boundaries have a significant influence on the properties of the material, dependant on the misorientation across boundaries.
A grain boundary is the interface between two neighbouring grains. Classified by the misorientation - the difference in orientation between two grains.

Grain boundaries are regions of comparative disorder, but, Special grain boundaries exist where a significant degree of order occurs

These are termed ‘CSL’ boundaries which have special properties
Crystalline Nature of Materials - CSLs

- Coincident Site Lattice boundaries (CSL's).
- A significant degree of order occurs at a CSL boundary, which leads to special properties.

Schematic representation of a \(\Sigma^3 \) boundary. Where the two grain lattices meet at the boundary, 1 in every 3 atoms is shared or coincident - shown in green.

Schematic representation of a \(\Sigma^5 \) boundary. 1 in every 5 atoms is shared or coincident.
Crystalline Nature of Materials - Properties

• Isotropic & Anisotropic Properties
 • If properties are equal in all directions, a material is termed 'Isotropic'.
 • If the properties tend to be greater or diminished in any direction, a material is termed 'Anisotropic'.
 • Many/most materials are anisotropic
 • Anisotropy results from preferred orientations or 'Texture'

In an isotropic polycrystalline material, grain orientations are random.
Crystalline Nature of Materials - Texture

• Texture may range from slight to highly developed
Orientation by Stereography
(Miller Index & Matrix)
Basic Crystallography - Bravais Lattices

• There are 14 Bravais Lattices:

• From these, 7 crystal systems are derived
Basic Crystallography - Crystal System

- Geometry of the unit cell
 → Repeated structure throughout the crystal.

The Seven Crystal Systems

<table>
<thead>
<tr>
<th>Crystal system</th>
<th>Restrictions on the axial system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclinic</td>
<td>(a \neq b \neq c) (\alpha \neq \beta \neq \gamma)</td>
</tr>
<tr>
<td>Monoclinic</td>
<td>(a \neq b \neq c) (\alpha = \beta = \gamma = 90)</td>
</tr>
<tr>
<td>Orthorhombic</td>
<td>(a \neq b = c) (\alpha = \beta = \gamma = 90)</td>
</tr>
<tr>
<td>Tetragonal</td>
<td>(a = b \neq c) (\alpha = \beta = \gamma = 90)</td>
</tr>
<tr>
<td>Trigonal</td>
<td>(a = b = c) (\alpha = \beta = \gamma = 120)</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>(a = b = c) (\alpha = \beta = \gamma = 90)</td>
</tr>
<tr>
<td>Cubic</td>
<td>(a = b = c) (\alpha = \beta = \gamma = 90)</td>
</tr>
</tbody>
</table>

There are seven Crystal systems:

1. Cubic
2. Hexagonal
3. Trigonal
4. Tetragonal
5. Orthorhombic
6. Monoclinic
7. Triclinic

The lengths of the sides of the unit cell are shown below as \(a \), \(b \) and \(c \). The corresponding angles are shown as \(\alpha \), \(\beta \) and \(\gamma \).
Basic Crystallography – Crystallographic Direction

- A crystallographic direction describes the intersection of specific faces or lattice planes.
- Miller Indices can be used to describe directions.

For a cubic material the plane and the normal to the plane have the same indices.
For a cubic example, Miller indices can be derived to describe a plane.

Consider a cubic unit cell with sides a, b, c, with an origin as shown:

- Take reciprocal
- Miller Indices

$$\begin{align*}
a, b, c, & \quad 1, \infty, \infty, \\
1, \infty, \infty, & \quad 1, 1, \infty, \\
\infty, & \quad 1, 1, 1,
\end{align*}$$
Miller indices of a pole

Representation of Orientation
Stereographic Projection

- Uses the inclination of the normal to the crystallographic plane: the points are the intersection of each crystal direction with a (unit radius) sphere.

Fig. 2–25 \{100\} poles of a cubic crystal.
Projection from Sphere to Plane

- Projection of spherical information onto a flat surface
 - Equal area projection (Schmid projection)
 - Equiangular projection (Wulff projection, more common in crystallography)
Standard (001) Projection

Fig. 2–37 Standard (001) projection of a cubic crystal, after Barrett [1.7].

Representation of Orientation
Stereographic, Equal Area Projections

Stereographic (Wulff) Projection*:
\[OP' = R \tan(\theta/2) \]

Equal Area (Schmid) Projection:
\[OP' = R \sin(\theta/2) \]

* Many texts, e.g. Cullity, show the plane touching the sphere at N: this changes the magnification factor for the projection, but not its geometry.
Pole Figure Example

- If the Diffraction goniometer is set for \{100\} reflections, then all directions in the sample that are parallel to \langle100\rangle directions will exhibit diffraction.

→ The Sample shows a crystal oriented to put all 3 \langle100\rangle directions approximately equally spaced from the ND.
Miller Index of a Crystal Orientation

- 3 orthogonal directions as the reference frame. → a set of unit vectors called e_1, e_2 and e_3.

- In many cases we use the names Rolling Direction (RD) // e_1, Transverse Direction (TD) // e_2, and Normal Direction (ND) // e_3.

- We then identify a crystal (or plane normal) parallel to 3rd axis (ND) and a crystal direction parallel to the 1st axis (RD), written as (hkl)[uvw].
In this example the orientation of the crystal shown can be written as: \{100\}<110>
Basic Crystallography - Orientation Matrix

The orientation matrix describes the absolute orientation of the crystal with respect to the sample axes.
Euler Angles are a sequence of three angles which describe the rotation of a crystal with reference to crystal axes. The first is a rotation of ϕ_1 about the crystal [001] (z), then Φ about the [100] (x), and finally ϕ_2 about [001] (z).

- Euler Angles are the three rotations about the main crystal axes.
- Euler angles are one possible means of describing a crystal orientation.

Three rotations ϕ_1, Φ, ϕ_2 about the Z, X, and Z axes are then quoted in degrees.
Basic Crystallography – Axis/Angle Misorientation

• Misorientation is the expression of the orientation of one crystal with respect to another crystal.

Representation of Orientation

Angle 60°

Misorientation = 60° [001]
Orientation by 3 Rotations
(Euler Angles : Mathematical Approach)
Euler Angle Definition (Bunge)

Representation of Orientation
Euler Angles, Animated

Crystal

Sample Axes

$e_3' = e_3 = \text{Z}_{\text{sample}} = \text{ND}$

$z_{\text{Crystal}} = e_3''''$

$e_2' = e_2 = \text{Y}_{\text{sample}} = \text{TD}$

φ_2

$e_3' = e_3''$

$e_1' = e_1''$

φ_1

$e_2'' = e_2''$

$e_1' = e_1''$

Φ

Φ

$[001]$

$[010]$

$[100]$

3^{rd} position (final)

2^{nd} position

1^{st} position

Representation of Orientation
Euler Angles, Ship Analogy

Analogy: position and the heading of a boat with respect to the globe.

- **Latitude** (Θ) and **longitude** (ψ)
 : Position of the boat on Earth
- third angle (ϕ)
 : *heading of* boat relative to the line of longitude that connects the boat to the North Pole.
Meaning of Euler angles

- First two angles, ϕ_1 and Φ, the position of the [001] crystal direction relative to the specimen axes.
- Think of rotating the crystal about the ND (1st angle, ϕ_1); then rotate the crystal out of the plane (about the [100] axis, Φ);
- 3rd angle (ϕ_2) tells Rotation of the crystal about [001].
Euler Angle Definitions

Bunge and Canova are inverse to one another
Kocks and Roe differ by sign of third angle
Bunge rotates about x’, Kocks about y’ (2nd angle)
Conversions

<table>
<thead>
<tr>
<th>Convention</th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>3<sup>rd</sup></th>
<th>2<sup>nd</sup> angle about t axis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kocks (symmetric)</td>
<td>Ψ</td>
<td>Θ</td>
<td>φ</td>
<td>y</td>
</tr>
<tr>
<td>Bunge</td>
<td>ϕ<sub>1</sub>−π/2</td>
<td>Φ</td>
<td>π/2−ϕ<sub>2</sub></td>
<td>x</td>
</tr>
<tr>
<td>Matthies</td>
<td>α</td>
<td>β</td>
<td>π−γ</td>
<td>y</td>
</tr>
<tr>
<td>Roe</td>
<td>Ψ</td>
<td>Θ</td>
<td>π−Φ</td>
<td>y</td>
</tr>
</tbody>
</table>
Miller indices to vectors

- Need the direction cosines for all 3 crystal axes.
- A direction cosine is the cosine of the angle between a vector and a given direction or axis.
- Sets of direction cosines can be used to construct a transformation matrix from the vectors.
Rotation of axes in the plane: $x, y = \text{old axes}; x', y' = \text{new axes}$

$$v' = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} v$$

N.B. Passive Rotation/ Transformation of Axes
Definition of an Axis Transformation:

\[\mathbf{e} = \text{old axes}; \quad \mathbf{e}' = \text{new axes} \]

Sample to Crystal (primed)

\[a_{ij} = \mathbf{e}'_i \cdot \mathbf{e}'_j \]

\[
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
\]
Sample to Crystal (primed)

Miller index notation of texture component specifies direction cosines of xtal directions \(\parallel \) to sample axes.

\[
t = \text{hkl} \times \text{uvw}
\]
Form matrix from Miller Indices

\[\hat{n} = \frac{(h, k, l)}{\sqrt{h^2 + k^2 + l^2}} \]
\[\hat{b} = \frac{(u, v, w)}{\sqrt{u^2 + v^2 + w^2}} \]

\[\hat{t} = \frac{\hat{n} \times \hat{b}}{|\hat{n} \times \hat{b}|} \]

Sample

\[a_{ij} = \text{Crystal} \begin{pmatrix} b_1 & t_1 & n_1 \\ b_2 & t_2 & n_2 \\ b_3 & t_3 & n_3 \end{pmatrix} \]
Bunge Euler angles to Matrix

Rotation 1 (ϕ_1): rotate axes (anticlockwise) about the (sample) 3 [ND] axis; Z_1.

Rotation 2 (Φ): rotate axes (anticlockwise) about the (rotated) 1 axis [100] axis; X.

Rotation 3 (ϕ_2): rotate axes (anticlockwise) about the (crystal) 3 [001] axis; Z_2.

Representation of Orientation
Bunge Euler angles to Matrix

\[Z_1 = \begin{pmatrix} \cos \phi_1 & \sin \phi_1 & 0 \\ -\sin \phi_1 & \cos \phi_1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \Phi & \sin \Phi \\ 0 & -\sin \Phi & \cos \Phi \end{pmatrix}, \]

\[Z_2 = \begin{pmatrix} \cos \phi_2 & \sin \phi_2 & 0 \\ -\sin \phi_2 & \cos \phi_2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[A = Z_2 X Z_1 \]
Matrix with Bunge Angles

\[A = Z_2 X Z_1 = \]

\[
\begin{bmatrix}
\cos \varphi_1 \cos \varphi_2 & \sin \varphi_1 \cos \varphi_2 \\
-\sin \varphi_1 \sin \varphi_2 \cos \Phi & +\cos \varphi_1 \sin \varphi_2 \cos \Phi \\
-\cos \varphi_1 \sin \varphi_2 & -\sin \varphi_1 \sin \varphi_2 \\
-\sin \varphi_1 \cos \varphi_2 \cos \Phi & +\cos \varphi_1 \cos \varphi_2 \cos \Phi \\
\sin \varphi_1 \sin \Phi & -\cos \varphi_1 \sin \Phi \\
\end{bmatrix}
\]

(hkl)

\[
\begin{bmatrix}
\sin \varphi_2 \sin \Phi \\
\cos \varphi_2 \sin \Phi \\
\cos \Phi \\
\end{bmatrix}
\]
Matrix, Miller Indices

- The general Rotation Matrix, a, can be represented as in the following:

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\]

- Where the Rows are the direction cosines for [100], [010], and [001] in the *sample coordinate system* (pole figure).
Matrix, Miller Indices

- The columns represent components of three other unit vectors:

\[
[uvw] \equiv RD
\]

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\]

\[
TD
\]

\[
ND \equiv (hkl)
\]

- Where the Columns are the direction cosines (i.e. hkl or uvw) for the RD, TD and Normal directions in the crystal coordinate system.
Compare Matrices

\[
\begin{bmatrix}
 b_1 & t_1 & n_1 \\
 b_2 & t_2 & n_2 \\
 b_3 & t_3 & n_3 \\
\end{bmatrix}
\text{Sample}
\]

\[
\begin{bmatrix}
 \cos \varphi_1 \cos \varphi_2 & \sin \varphi_1 \cos \varphi_2 \\
 -\sin \varphi_1 \sin \varphi_2 \cos \Phi & +\cos \varphi_1 \sin \varphi_2 \cos \Phi \\
 -\cos \varphi_1 \sin \varphi_2 & -\sin \varphi_1 \sin \varphi_2 \\
 -\sin \varphi_1 \cos \varphi_2 \cos \Phi & +\cos \varphi_1 \cos \varphi_2 \cos \Phi \\
 \sin \varphi_1 \sin \Phi & -\cos \varphi_1 \sin \Phi \\
\end{bmatrix}
\text{Crystal}
\]

\[
\begin{bmatrix}
 \sin \varphi_2 \sin \Phi \\
 \cos \varphi_2 \sin \Phi \\
 \cos \Phi \\
\end{bmatrix}
\text{(hkl)}
\]
Miller indices from Euler angle matrix

\[h = n \sin \Phi \sin \varphi_2 \]
\[k = n \sin \Phi \cos \varphi_2 \]
\[l = n \cos \Phi \]
\[u = n'(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 \cos \Phi) \]
\[v = n'(-\cos \varphi_1 \sin \varphi_2 - \sin \varphi_1 \cos \varphi_2 \cos \Phi) \]
\[w = n' \sin \Phi \sin \varphi_1 \]

\(n, n' \) = factors to make integers
Euler angles from Miller indices

Inversion of the previous relations:

\[
\begin{align*}
\cos \Phi &= \frac{l}{\sqrt{h^2 + k^2 + l^2}} \\
\cos \varphi_2 &= \frac{k}{\sqrt{h^2 + k^2}} \\
\sin \varphi_1 &= \frac{w}{\sqrt{u^2 + v^2 + w^2}} \cdot \frac{\sqrt{h^2 + k^2 + l^2}}{\sqrt{h^2 + k^2}}
\end{align*}
\]

Caution: when one uses the inverse trig functions, the range of result is limited to \(0^\circ \leq \cos^{-1} \theta \leq 180^\circ\), or \(-90^\circ \leq \sin^{-1} \theta \leq 90^\circ\). Thus it is not possible to access the full 0-360° range of the angles. It is more reliable to go from Miller indices to an orientation matrix, and then calculate the Euler angles. Extra credit: show that the following surmise is correct. If a plane, \(hkl\), is chosen in the lower hemisphere, \(l<0\), show that the Euler angles are incorrect.
Euler angles from Orientation Matrix

Notes:
The range of \(\cos^{-1} \) is 0-\(\pi \), which is sufficient for \(\Phi \) from this, \(\sin(\Phi) \) can be obtained.

The range of \(\tan^{-1} \) is 0-2\(\pi \), (must use the ATAN2 function) which is required for calculating \(\phi_1 \) and \(\phi_2 \).

\[
\Phi = \cos^{-1}(a_{33})
\]

\[
\varphi_2 = \tan^{-1}\left(\frac{a_{13}/\sin \Phi}{a_{23}/\sin \Phi}\right)
\]

\[
\varphi_1 = \tan^{-1}\left(\frac{a_{31}/\sin \Phi}{a_{32}/\sin \Phi}\right)
\]

if \(a_{33} \approx 1 \), \(\Phi = 0 \), \(\varphi_1 = \frac{\tan^{-1}(a_{12}/a_{11})}{2} \), and \(\varphi_2 = -\varphi_1 \)
Complete orientations in the Pole Figure

Note the loss of information in a diffraction experiment if each set of poles from a single component cannot be related to one another.
Complete Orientations in Inverse Pole Figure

Note the loss of information in a diffraction experiment if each set of poles from a single component cannot be related to one another. The same as Pole figure Experiment
Other Euler angle definitions

• Very **Confusing Aspect of Texture Analysis** is that there are multiple definitions of the Euler angles.
• Definitions according to *Bunge, Roe and Kocks* are in common use.
• Roe definition is Exactly Classical definition by Euler
• Components have *different values of Euler angles* depending on which definition is used.
• The *Bunge* definition is the most common.
• The differences between the definitions are based on differences in the sense of rotation, and the choice of rotation axis for the second angle.
Orientation by 3 Rotations
(Euler Angles : Texture Components)
Cube Component = \{001\}\langle100\rangle
Cube Texture (100)[001]:cube-on-face

- Observed in recrystallization of fcc metals
- The 001 orientations are parallel to the three ND, RD, and TD directions.
Sharp Texture (Recrystallization)

- Look at the (001) pole figures for this type of texture: maxima correspond to \{100\} poles in the standard stereographic projection.
Euler angles of Cube component

- The Euler angles for this component are simple, but not so simple!
- The crystal axes align exactly with the specimen axes, therefore all three angles are exactly zero:
 \((\phi_1, \Phi, \phi_2) = (0^\circ, 0^\circ, 0^\circ)\).
- Due to the effects of crystal symmetry: aligning [100]//TD, [010]//-RD, [001]//ND.
 \(\rightarrow\) evidently still the cube orientation
 \(\rightarrow\) Euler angles are \((\phi_1, \Phi, \phi_2) = (90^\circ, 0^\circ, 0^\circ)\)!
\{011\}<001> : the Goss Component

- Goss Texture: Recrystallization texture for FCC materials such as Brass, ...
- \((011) \) plane is oriented towards the ND and the [001] inside the \((011) \) plane is along the RD.
\{011\}<001>: cube-on-edge

- In the 011 pole figure, one of the poles is oriented parallel to the ND (center of the pole figure) but the other ones will be at 60° or 90° angles but tilted 45° from the RD!
Euler angles of Goss component

- The Euler angles for this component are simple, and yet other variants exist, just as for the cube component.
- Only one rotation of 45° is needed to rotate the crystal from the reference position (i.e. the cube component); this happens to be accomplished with the 2nd Euler angle.
- \((\phi_1, \Phi, \phi_2) = (0^\circ, 45^\circ, 0^\circ)\).
 Other variants will be shown when symmetry is discussed.
Brass component

- Brass Texture: a rolling texture component for materials such as Brass, Silver, and Stainless steel.

(110)[112]
Brass component

- 30° Rotation of the Goss texture about the ND
Brass component: Euler angles

- The brass component is convenient because we can think about performing two successive rotations:
 - 1st about the ND, 2nd about the new position of the [100] axis.
 - 1st rotation is 35° about the ND; 2nd rotation is 45° about the [100].
 - \((\phi_1, \Phi, \phi_2) = (35°, 45°, 0°)\).
<table>
<thead>
<tr>
<th>Name</th>
<th>Indices</th>
<th>Bunge ((\varphi_1,\Phi,\varphi_2)) RD= 1</th>
<th>Kocks ((\psi,\Theta,\phi)) RD= 1</th>
<th>Bunge ((\varphi_1,\Phi,\varphi_2)) RD= 2</th>
<th>Kocks ((\psi,\Theta,\phi)) RD= 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>copper/1st var.</td>
<td>{112}〈111〉</td>
<td>40, 65, 26</td>
<td>50, 65, 26</td>
<td>50, 65, 64</td>
<td>39, 66, 63</td>
</tr>
<tr>
<td>copper/2nd var.</td>
<td>{112}〈111〉</td>
<td>90, 35, 45</td>
<td>0, 35, 45</td>
<td>0, 35, 45</td>
<td>90, 35, 45</td>
</tr>
<tr>
<td>S3*</td>
<td>{123}〈634〉</td>
<td>59, 37, 27</td>
<td>31, 37, 27</td>
<td>31, 37, 63</td>
<td>59, 37, 63</td>
</tr>
<tr>
<td>S/1st var.</td>
<td>(312)〈021〉</td>
<td>32, 58, 18</td>
<td>58, 58, 18</td>
<td>26, 37, 27</td>
<td>64, 37, 27</td>
</tr>
<tr>
<td>S/2nd var.</td>
<td>(312)〈021〉</td>
<td>48, 75, 34</td>
<td>42, 75, 34</td>
<td>42, 75, 56</td>
<td>48, 75, 56</td>
</tr>
<tr>
<td>S/3rd var.</td>
<td>(312)〈021〉</td>
<td>64, 37, 63</td>
<td>26, 37, 63</td>
<td>58, 58, 72</td>
<td>32, 58, 72</td>
</tr>
<tr>
<td>brass/1st var.</td>
<td>{110}〈112〉</td>
<td>35, 45, 0</td>
<td>55, 45, 0</td>
<td>55, 45, 0</td>
<td>35, 45, 0</td>
</tr>
<tr>
<td>brass/2nd var.</td>
<td>{110}〈112〉</td>
<td>55, 90, 45</td>
<td>35, 90, 45</td>
<td>35, 90, 45</td>
<td>55, 90, 45</td>
</tr>
<tr>
<td>brass/3rd var.</td>
<td>{110}〈112〉</td>
<td>35, 45, 90</td>
<td>55, 45, 90</td>
<td>55, 45, 90</td>
<td>35, 45, 90</td>
</tr>
<tr>
<td>Taylor</td>
<td>{4 \ 4 \ 1}〈11 11 8〉</td>
<td>42, 71, 20</td>
<td>48, 71, 20</td>
<td>48, 71, 70</td>
<td>42, 71, 70</td>
</tr>
<tr>
<td>Taylor/2nd var.</td>
<td>{4 \ 4 \ 1}〈11 11 8〉</td>
<td>90, 27, 45</td>
<td>0, 27, 45</td>
<td>0, 27, 45</td>
<td>90, 27, 45</td>
</tr>
<tr>
<td>Goss/1st var.</td>
<td>{110}〈001〉</td>
<td>0, 45, 0</td>
<td>90, 45, 0</td>
<td>90, 45, 0</td>
<td>0, 45, 0</td>
</tr>
<tr>
<td>Goss/2nd var.</td>
<td>{110}〈001〉</td>
<td>90, 90, 45</td>
<td>0, 90, 45</td>
<td>0, 90, 45</td>
<td>90, 90, 45</td>
</tr>
<tr>
<td>Goss/3rd var.</td>
<td>{110}〈001〉</td>
<td>0, 45, 90</td>
<td>90, 45, 90</td>
<td>90, 45, 90</td>
<td>0, 45, 90</td>
</tr>
</tbody>
</table>
Summary

• Conversion between different forms of description of texture components described.

• Physical picture of the meaning of Euler angles as rotations of a crystal given.

• Miller indices are descriptive, but matrices are useful for computation, and Euler angles are useful for mapping out textures (to be discussed).
Orientation by Axis/Angle
(Rodrigues Vectors, Quaternions)
Objectives

• Introduction of Rodrigues* vector as a representation of rotations, orientations and misorientations (grain boundary types).

• Introduction of quaternion and its relationship to other representations

*French mathematician active in the early part of the 19th C.
Rodrigues vector

• Rodrigues vectors were popularized by Frank [Frank, F. (1988). “Orientation mapping.” Metallurgical Transactions 19A: 403-408.], hence the term Rodrigues-Frank space for the set of vectors.

• Most useful for representation of misorientations, i.e. grain boundary character; also useful for orientations (texture components).

• Fibers based on a fixed axis are always straight lines in RF space (unlike Euler space).
Rodrigues vector

- Axis-Angle representation:
 \[
 \mathbf{r} = \frac{\mathbf{OQ}}{|\mathbf{OQ}|} \quad \text{Rotation axis}
 \]
 \[
 \rho = r \tan\left(\frac{\alpha}{2}\right) \quad \text{Rotation Angle about Axis: } \alpha
 \]

The rotation angle is \(\alpha \), and the magnitude of the vector is scaled by the tangent of the semi-angle.

BEWARE: Rodrigues vectors do NOT obey the parallelogram rule (because rotations are NOT commutative!)

Representation of Orientation
Orientation, Misorientation

- **Orientation**: \(g \)
- **Misorientation**: \(\Delta g \)
- Given two orientations (grains) \(g_A \) and \(g_B \)
- Misorientation between A and B Orientation

\[\Delta g = g_B g_A^{-1} \]
Conversions: Matrix \rightarrow RF vector

- Conversion from rotation (misorientation) matrix: $\Delta g = g_B g_A^{-1}$

\[
\begin{pmatrix}
\rho_1 \\
\rho_2 \\
\rho_3
\end{pmatrix} = \begin{bmatrix}
\tan \frac{\theta}{2} \left[\Delta g(2,3) - \Delta g(3,2) \right] / \text{norm} \\
\tan \frac{\theta}{2} \left[\Delta g(1,3) - \Delta g(3,1) \right] / \text{norm} \\
\tan \frac{\theta}{2} \left[\Delta g(1,2) - \Delta g(2,1) \right] / \text{norm}
\end{bmatrix}
\]

\[
\text{norm} = \sqrt{[\Delta g(2,3) - \Delta g(3,2)]^2 + [\Delta g(1,3) - \Delta g(3,1)]^2 + [\Delta g(1,2) - \Delta g(2,1)]^2}
\]

\[
\cos \frac{\theta}{2} = \sqrt{\frac{1}{2} (\cos \theta + 1)} = \frac{1}{2} \sqrt{1 + \text{tr}(\Delta g)}
\]
Conversion from Bunge Euler Angles:

- \(\tan(\theta/2) = \sqrt{(1/\cos(\Phi/2) \cos((\phi_1 + \phi_2)/2))^2 - 1} \)
- \(\rho_1 = \tan(\Phi/2) \sin((\phi_1 - \phi_2)/2)/[\cos((\phi_1 + \phi_2)/2)] \)
- \(\rho_2 = \tan(\Phi/2) \cos((\phi_1 - \phi_2)/2)/[\cos((\phi_1 + \phi_2)/2)] \)
- \(\rho_3 = \tan((\phi_1 + \phi_2)/2) \)

“Representation of orientations of symmetrical objects by Rodrigues vectors.”
Combining Rotations as RF vectors

- Two Rodrigues vectors combine to form a third, ρ_C, as follows, where ρ_B follows after ρ_A. Note: NOT parallelogram law for vectors!

$$\rho_C = (\rho_A, \rho_B) = \frac{\rho_A + \rho_B - \rho_A \times \rho_B}{1 - \rho_A \cdot \rho_B}$$

vector product scalar product
Combining Rotations as RF vectors: component form

\[
\begin{aligned}
(\rho_1^C, \rho_2^C, \rho_3^C) &= \left(\frac{\rho_1^A + \rho_1^B - \left[\rho_2^A \rho_3^B - \rho_3^A \rho_2^B \right]}{1 - \left(\rho_1^A \rho_1^B + \rho_2^A \rho_2^B + \rho_3^A \rho_3^B \right)} \right) \\
&\quad \left[\rho_2^A + \rho_2^B - \left[\rho_3^A \rho_1^B - \rho_1^A \rho_3^B \right] \right) \\
&\quad \left[\rho_3^A + \rho_3^B - \left[\rho_1^A \rho_2^B - \rho_2^A \rho_1^B \right] \right) \\
\end{aligned}
\]
Quaternions

- A close cousin to the Rodrigues vector
- A four component vector in relation to the axis-angle representation as follows
 - $[uvw]$: Unit vector of rotation axis
 - θ : Rotation angle.
- $q = q(q_1,q_2,q_3,q_4)$
 - $= q(u \sin \theta/2, v \sin \theta/2, w \sin \theta/2, \cos \theta/2)$
Why Use Quaternions?

• Quaternions offer a efficient way on combining rotations, because of the small number of floating point operations required to compute the product of two rotations.

• The quaternion has a unit norm
\[\sqrt{q_1^2 + q_2^2 + q_3^2 + q_4^2} = 1 \] → Always Finite Value
→ No Computational Overflow & Underflow
Computation: combining rotations

- **Quaternions**
 - 16 multiplies and 12 additions
 - with no divisions or transcendental functions.
- **Matrix**
 - 27 multiplies and 18 additions.
- **Rodrigues vector**
 - 10 multiplies and 9 additions.
- The product of two rotations
 - the least work with Rodrigues vectors
Conversions: matrix → quaternion

\[
\begin{align*}
\begin{pmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{pmatrix} &= \\
&= \begin{bmatrix}
\sin \frac{\theta}{2} \left[\Delta g(2,3) - \Delta g(3,2) \right] / \text{norm} \\
\sin \frac{\theta}{2} \left[\Delta g(1,3) - \Delta g(3,1) \right] / \text{norm} \\
\sin \frac{\theta}{2} \left[\Delta g(1,2) - \Delta g(2,1) \right] / \text{norm} \\
\cos \frac{\theta}{2}
\end{bmatrix} \\
\text{norm} &= \sqrt{\left[\Delta g(2,3) - \Delta g(3,2) \right]^2 + \left[\Delta g(1,3) - \Delta g(3,1) \right]^2 + \left[\Delta g(1,2) - \Delta g(2,1) \right]^2} \\
\cos \frac{\theta}{2} &= \frac{1}{2} \sqrt{1 + \text{tr}(g)} \quad \sin \frac{\theta}{2} = \frac{1}{2} \sqrt{3 - \text{tr}(g)}
\end{align*}
\]
Conversions: quaternion → matrix

- The conversion of a quaternion to a rotation matrix is given by:
- \(e_{ijk} \) is the permutation tensor, \(\delta_{ij} \) the Kronecker delta

\[
g_{ij} = (q_4^2 - q_1^2 - q_2^2 - q_3^2) \delta_{ij} \\
+ 2q_i q_j + 2q_4 \sum_{k=1,3} e_{ijk} q_k
\]
Bunge angles → Quaternion

- \([q_1, q_2, q_3, q_4] = \)

 \[
 \begin{bmatrix}
 \sin \Phi/2 \cos\left\{ (\phi_1 - \phi_2)/2 \right\}, \\
 \sin \Phi/2 \sin\left\{ (\phi_1 - \phi_2)/2 \right\}, \\
 \cos \Phi/2 \sin\left\{ \phi_1 + \phi_2 \right\}/2, \\
 \cos \Phi/2 \cos\left\{ (\phi_1 + \phi_2)/2 \right\}
 \end{bmatrix}
 \]

Note the occurrence of sums and differences of the 1st and 3rd Euler angles!
Combining quaternions

- The algebraic form for combination of quaternions is as follows, where q_B follows q_A:

$$q_C = q_A q_B$$

$$q_{C1} = q_{A1}q_{B4} + q_{A4}q_{B1} - q_{A2}q_{B3} + q_{A3}q_{B2}$$

$$q_{C2} = q_{A2}q_{B4} + q_{A4}q_{B2} - q_{A3}q_{B1} + q_{A1}q_{B3}$$

$$q_{C3} = q_{A3}q_{B4} + q_{A4}q_{B3} - q_{A1}q_{B2} + q_{A2}q_{B1}$$

$$q_{C4} = q_{A4}q_{B4} - q_{A1}q_{B1} - q_{A2}q_{B2} - q_{A3}q_{B3}$$
Positive vs Negative Rotations

considering a rotation of \(\theta \) about an arbitrary axis, \(r \). If one rotates \textit{backwards} by the complementary angle, \(\theta - 2\pi \) (also about \(r \)), in terms of quaternions, however, \textbf{the representation is different}!
Positive vs Negative Rotations

Rotation θ about an axis, \mathbf{r}

\[
\mathbf{q}(\mathbf{r}, \theta) = \mathbf{q}(u \sin \theta/2, v \sin \theta/2, w \sin \theta/2, \cos \theta/2)
\]

Rotation $\theta - 2\pi$ about an axis, \mathbf{r}

\[
\mathbf{q}(\mathbf{r}, \theta - 2\pi) = \mathbf{q}(u \sin(\theta - 2\pi)/2, v \sin(\theta - 2\pi)/2, w \sin(\theta - 2\pi)/2, \cos(\theta - 2\pi)/2)
\]

\[
= \mathbf{q}(-u \sin \theta/2, -v \sin \theta/2, -w \sin \theta/2, -\cos \theta/2)
\]

\[
= -\mathbf{q}(\mathbf{r}, \theta)
\]

- The quaternion representing the negative rotation is the negative of the original (positive) rotation. The positive and negative quaternions are equivalent or physically indistinguishable, $\mathbf{q} \equiv -\mathbf{q}$.

Representation of Orientation
Negative of a Quaternion

- The negative (inverse) of a quaternion is given by negating the fourth component, \(q^{-1} = \pm (q_1, q_2, q_3, -q_4) \); this relationship describes the *switching symmetry* at grain boundaries.

\[
I = q_A q_B
\]

\[
I = (0,0,0,1) \quad q_A = q_B^{-1}
\]
Summary

• Rodrigues vectors :
 → Rotations with a 3-component vector.
• Quaternions form a complete algebra.
 → In unit length quaternions, they are very useful for describing rotations.
 → Calculation of misorientations in cubic systems is particularly efficient.
Matrix with Roe angles

$$a(\psi, \theta, \phi) = [uvw] (hkl)$$

\[
\begin{pmatrix}
-\sin \psi \sin \phi & \cos \psi \sin \phi & -\cos \phi \sin \theta \\
+\cos \psi \cos \phi \cos \theta & +\sin \psi \cos \phi \cos \theta & \sin \phi \sin \theta \\
-\sin \psi \cos \phi & \cos \psi \cos \phi & \sin \phi \sin \theta \\
-\cos \psi \sin \phi \cos \theta & -\sin \psi \sin \phi \cos \theta & \cos \theta
\end{pmatrix}
\]
Roe angles \rightarrow quaternion

\[[q_1, q_2, q_3, q_4] = \]
\[
\begin{align*}
-\frac{\sin \Theta}{2} \sin\frac{(\Psi - \Phi)}{2}, \\
\sin \Theta/2 \cos\frac{(\Psi - \Phi)}{2}, \\
\cos \Theta/2 \sin\frac{(\Psi + \Phi)}{2}, \\
\cos \Theta/2 \cos\frac{(\Psi + \Phi)}{2}
\end{align*}
\]
Conversion from Roe Euler Angles:

- \(\tan(\theta/2) = \sqrt{(1/[\cos(\Theta/2) \cos((\Psi + \Phi)/2)]^2 - 1} \)
- \(\rho_1 = -\tan(\Theta/2) \sin((\Psi - \Phi)/2)/[\cos((\Psi + \Phi)/2)] \)
- \(\rho_2 = \tan(\Theta/2) \cos((\Psi - \Phi)/2)/[\cos((\Psi + \Phi)/2)] \)
- \(\rho_3 = \tan((\Psi + \Phi)/2) \)

See, for example, Altmann’s book on Quaternions, where \(\Psi = \alpha, \Theta = \beta, \Phi = \gamma \). These formulae can be converted to those on the previous page for Bunge angles by substituting:
\(\Psi = \phi_1 - \pi/2, \Phi = \phi_1 + \pi/2. \)
Matrix with Kocks Angles

\[
a(\Psi, \Theta, \phi) = \begin{bmatrix}
-\sin \Psi \sin \phi \\
-\cos \Psi \cos \phi \cos \Theta \\
\sin \Psi \cos \phi \\
-\cos \Psi \sin \phi \cos \Theta \\
\cos \Psi \sin \Theta
\end{bmatrix}
\begin{bmatrix}
-\sin \Psi \cos \phi \cos \Theta \\
-\cos \Psi \cos \phi \\
-\sin \Psi \sin \phi \cos \Theta \\
-\sin \Psi \sin \Theta \\
\sin \Psi \sin \Theta \\
\cos \Theta
\end{bmatrix}
\]

(hkl)

Note: obtain transpose by exchanging \(\phi \) and \(\Psi \).